xpanda

Table of contents

Defining VAriabIes.c.eiiiiiiiiiiiiiie ettt et ettt et eebteeeeens
RANZE TEPIACEIMENL.eiiiiiiiiiiiieiiie ettt ettt et e st e e e e e
CONSLANES TN TANZES. .. .eeeuteentieeiteeite et et et et e e bt esate e bt e et e e eabeesabeeabeeebbeebeesabeeeensbeeesaabbeeesnbaeennns
MUILIPIE VATTADIES.cuiieiiiiiiieiieee ettt sttt e ettt e e e e sannee e
MUIIPLE CONSIIAINES. ...ceeuteieeniiieeiieeeitee et ee ettt et ettt e et e et eesabeessabeesabeesateesbbeesbbeesnbteessaeeeens
PrediCate CONMSITAINES. ..co.utiiutiiiieiie ettt ettt et sat e et esat e et e saae et eesabeebeesaaenans
Multiple variables and MuUltiPle TANZES.........eeecviiiriiieeiiieeriee ettt eeeeeire e e seraee e e e e
FUNCHON VATIADIES. ...ccouuiiiiiiiiiiiiee ettt ettt e et e e e e e
RULE DOAIES. ..ttt ettt ettt e et e et eebbe e e bbeeeabeeeeeeeas
Names defined By XPanda.........cccueeeiiieiiiiieriiieeiie ettt et e et e e st e e e e e s ebaaeeeeeenes

Variables and COMPAriSION OPETALIONS.eeerureerrireeritreerieeerieeerteeesteeesteesseseesssreesssaeesssssssneeesesnnns
Variables and operators in head.............coouiiiiiiiiiiiiii e
Variables 1N head.......coouiiiiiiiii e e e
Variables 10 DOAYccuuieiiiieiiieeee ettt ettt e et e st e e st e e et e e s baeesabaeens
Variables of higher cardinality............oociiiiiiiiiiiiiiiee et

EXtENAING XPANAA.....cciiiiiiiiiiiiiie ettt ettt e et e e st eestbeeeateeetaeeesaeeensssaeeeeeeennssnneeeeeannns
PLOCESSOTS. ...ttt ettt ettt e s bt e s bt e st e ettt e sttt e sabe e e sabeeesaneeenanee
AdAING NEW PIOCESSOTS. ..ccuuutieuiieeriiieeritieertteesitteeatteesteeesatteestteesabteesabteesbeeeasbbteeeeesanasbseeeesasnans
Adding NEW CONSIIAINT LY PES....vveerurieiriieeriteeiiteeritteesiteeeriteeesiteeesiteeebaeeebeeesbeeessteessanbbaeeeseannn

Introduction

xpanda is a simple preprocessing tool for use with a grounder/asp solver.
Its main advantage is in saving time and tedious copy and paste work. It can expand different types
of variable definitions as shown below.

Usage

Using xpanda is very straightforward and simple.

It accepts input from multiple sources like unix-pipes, stdin or an input file. Called without any
arguments it will point its output to stdout, infos and warnings will be written to stderr.

The possible commandline options can be aquired by calling xpanda with the argument -h or --help

and are listed here:

xpanda.py A simple rule expander for variable grounding

Usage:
./xpanda.py [options] [input-filename]
application | ./xpanda.py [options]
./xpanda.py < [options] [input-filename]

Options:
-h, --help -- displays this help message
-v, --verbose -- outputs info while parsing/replacing
--version -- displays version
-o<file>, -- saves output to target file
--outfile<file>
A typical call could be:

xpanda.py simple.lp | gringo -1 | clasp 0

License

xpanda is released under the BSD license. Essentially this means the sourcecode is free to be

modified, redistributed or changed in any other way.

Defining variables

xpanda will expand the statements.

The replacements use special names to prevent name collisions with your own predicates and facts.
The full range of names used by xpanda are listed at the end.

Range replacement

Variables and their constraints can be defined.

#variables = 1..10.
~x_dom(, 0, 1..10).
1{ val(, XD Val) : x dom(, 0, XD Val) }1.

This will create values from 1 to 10 for variablel.

Constants in ranges

Gringo const values can be used in range statements.

#variables =s..t.
_x_dom(, 0, s..t).
1{ val(, XD Val) : x dom(, 0, XD Val) }1.

This will create values from s to t for variablel.

Multiple variables

A list of variables is possible, each item separated by ',".

#variables = 1..10.

_x_dom(, 0, 1..10).

1{ val(, XD Val) : x dom(, 0, XD Val) }1.
_x_dom(, 0, 1..10).

1{ val(, XD Val) : x dom(, 0, XD Val) }1.

This will create values from 1 to 10 for variable1 and variable?2.

Multiple constraints

A list of constraints is possible, each item separated by 'I'.

#variables =1..10 | 21..30.

_x_dom(, 0, 1..10).

_x_dom(, 0, 21..30).

1{ val(, XD Val) : x dom(, 0, XD Val) }1.

This will create values from 1 to 10 and from 21 to 30 for variablel.

Predicate constraints

Also predicate constraints can be added. These have a logic variable assigned, which will be
replaced by the variable name. The first part before the colon will be used as the logical variable,
the rest will be added to the body of the domain definition.

#variables =X : g(X) : p(X).
~x_dom(» 0, X) - g(X) , p(X).
1{ val(, XD Val) : x dom(, 0, XD Val) }1.

These constraints can be combined with the range constraints above.

Multiple variables and multiple ranges

Multiple variables and ranges can be combined.

#variables , variable2 = 1..10 | 20..25.

_x_dom(, 0, 1..10).

~X_dom(, 0, 20..25).

1{ val(, XD Val) : x dom(, 0, XD Val) }1.
X _dom(variable2, 0, 1..10).

_x _dom(variable2, 0, 20..25).

1{ val(variable2, X D Val) : x dom(variable2, 0, X D Val) }1.

This will create values from 1 to 10 and 20 to 25 for variable1 and variable?2.

Function variables

Variable definitions can be of higher cardinality.

#variables (X) = 1..10.
~x_dom(, 1, 1..10).
1{ val((X), XD val) : x dom(, 1, X D val) }1.

This definition might not make sense without adding a rule body, as defined below.

Rule bodies

Variable definitions can have a body, which will be added to the body of the definition.
#variables (X) = 1..10 :- p(X).
_x_dom(1, 1..10).

1{ val((X), X D Vval) : x domf , 8, XD Val) }1 :- p(X).

Names defined by xpanda

The following names are defined or used by xpanda, if you want to use those, be aware of possible
unwanted side effect.

Predicates

_x_dom/3 Created by #variable definition.

val/2 Containing all values of variables.
Facts

[variablename] Will be replaced by Val_[variablename].
Variables

Val [variablename] Replacement for [variablename]

X D Val Used in domain definitions

_x_dom/3 will be defined as #hidden for gringo.

Variables and comparision operations

After the variable definitions have been parsed and removed, all variable occurences of the variables
specified are searched and then replaced following the rules below. All replacements are made
inline to prevent the creation of new rules.

Variables and operators in head

< variableZ2.

- val(,), val(variable2,),
>=
variable2(X , Y) + 4 == :- rule.
- val(variable2(X,Y),), + 4 '= 2, rule.

The operators used in head are negated and the comparision is moved to the body. If no body existed
before, it will be created.

Variables in head
f().

f() - val()).

Variables occuring in the head without a comparision operator will simply be replaced by their
logical variable counterpart, which value will be aquired in the rule body (added when neccessary).

Variables in body
- 3 >= (X).

M Val((X)r)r 3>=

head :- variable2 '= 10.
head :- val(variable2,), 1= 10.
All variables occuring in the body will simply be replaced by their logical variable counterpart,

which value will be aquired at the begin of the body.

Variables of higher cardinality

For replacing variables of higher cardinality the following occurences are all parsed the same way to
prevent mistyping:

(X,Y), (X,Y), (X, Y),

Extending xpanda

xpanda was designed to be easily extensible. It is written in python. The complete api
documentation can be found in the html folder.

Processors

Several processors are used by xpanda. A processor is a step in the workflow of handling a logical
program. All processors extend the class BaseProcessor. The normal behavior of xpanda is the
following: At the beginning, the logic program is checked for its consistency. Then the
VariablesConstraintExpander searches for all variable definition rules in the program. For all
variables defined there, rules are added to a buffer, the annex, which will be appended to the
program at the final output. Now the VariableOperatorReplacer walks through all rules of the
logical program structure, handling every head and body separate, replacing the variable names and
making apropriate changes. At the end the AnnexMerger merges the annex buffer to the program.

Adding new processors

The used processors are created in xpanda.py and appended to the main instance. The processors
will be called in the order they were added. To create a new processor, one has to create a new class
inheriting BaseProcessor to xpanda/processors.py which overwrites the processProgram method.
This method has the current source-code and the program structure as arguments. The source code
can be modified in place using predefined convinience methods. Also new program parts can be
added to the processors annex, which is a instance variable of BaseProcessor.

Adding new constraint types

All kinds of constraints can be parsed, but only those containing either a "..' (RangeConstraint) or
a "' (VariableConstraint) will be used in xpanda. The kind of constraints are defined in
xpanda/parser_helpers.py. To create a new constraint, a class inheriting Constraint has to be
created there. Then the factory method _create of Constraint needs to be changed, to detect the
new kind of constraint. At last the VariablesConstraintExpander must be changed to handle the
constraint and add the correct behaviour to the program.

file:///home/loplop/workspace/xpanda/doc/../html/index.html

	Introduction
	Usage
	License
	Defining variables
	Range replacement
	Constants in ranges
	Multiple variables
	Multiple constraints
	Predicate constraints
	Multiple variables and multiple ranges
	Function variables
	Rule bodies
	Names defined by xpanda

	Variables and comparision operations
	Variables and operators in head
	Variables in head
	Variables in body
	Variables of higher cardinality

	Extending xpanda
	Processors
	Adding new processors
	Adding new constraint types

